Volver a Guía

CURSO RELACIONADO

Matemática 51

2025 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
MATEMÁTICA 51 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 5 - Derivadas

2. Hallar la ecuación de la recta tangente al grafico de ff en el punto (x0,f(x0))(x_{0}, f(x_{0})) para el x0x_{0} dado.
a) f(x)=2x2+13x15f(x)=-2 x^{2}+13 x-15 en x0=3x_{0}=3

Respuesta

¿Te acordás qiue en el curso te dije que hay tres tipos de ejercicio sobre recta tangente que te pueden tomar? Bueno, este ejercicio es del primero tipo: Hallar la ecuación de la recta tangente. Mirá el video donde te explico tooodas las variantes de esto que te pueden tomar (particularmente la forma en que te dan el dato de la pendiente) y vení que vamos a resolverlo.

Para hallar la ecuación de la recta tangente al gráfico de una función ff en un punto específico (x0,f(x0))(x_0, f(x_0)), primero vamos a plantear dicha ecuación, y después calcular la derivada de la función en ese punto, que nos va a dar la pendiente de la tangente, y luego calcular la ecuación de la recta a partir del punto y la pendiente (tal como vimos en funciones lineales). 
La ecuación de la recta es:

y=mx+b y =mx+b



Para el punto (x0,y0)(x_0, y_0) nos queda:


y0=mx0+b y_0 =mx_0+b


donde m=f(x0)m = f'(x_0)y0=f(x0)y_0 = f(x_0)



1. Primero calculemos la derivada de la función para poder hallar la pendiente m=f(x0)m = f'(x_0):


f(x)=(2x2+13x15) f'(x) = (-2 x^{2}+13 x-15)'

f(x)=4x+13 f'(x) = -4x + 13
Ahora evaluamos la derivada en x0=3x_0 = 3 para obtener la pendiente de la tangente:

m=f(3)=4(3)+13=12+13=1 m = f'(3) = -4(3) + 13 = -12 + 13 = 1

2. Ahora calculemos y0=f(x0)y_0 = f(x_0):

f(3)=2(3)2+13(3)15=2(9)+3915=18+3915=2115=6 f(3) = -2(3)^2 + 13(3) - 15 = -2(9) + 39 - 15 = -18 + 39 - 15 = 21 - 15 = 6


Reemplacemos los valores en la ecuación de la recta:

y0=mx0+b y_0 =mx_0+b

6=1.3+b 6 =1.3+b

63=b 6 -3 = b

b=3b=3



Reemplazamos los valores de mm y bb en la ecuación de la recta y nos queda y=1x+3y = 1x + 3.


La ecuación de la recta tangente es y=x+3y = x + 3
Reportar problema
ExaComunidad
Iniciá sesión o Registrate para dejar tu comentario.